
Emerging Role of MicroRNAs in Cancer and
Cancer Stem Cells
Jin Hao,1 Sen Zhao,1 Yueling Zhang,1 Zhihe Zhao,1 Rui Ye,1 Jianing Wen,2 and Juan Li1*
1Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
West China School of Stomatology, Sichuan University, Chengdu 610041, China

2West China School of Medicine, Sichuan University, Chengdu 610041, China

ABSTRACT
Cancer stem cells (CSCs), or cancer cells with stem cell properties, represent a small fraction of tumor bulk and are thought to be responsible for
tumor formation and metastasis. However, the mechanisms of how CSCs are generated and regulated at the molecular level are poorly
understood. Recent progress has highlighted the significance of microRNAs (miRNAs) in cancer progression and CSC function. The function and
dysfunction ofmiRNAs in the development of cancer and CSCs have become a burgeoning area of intense research. A newfinding has elucidated
a mechanism of antagonistic miRNA crosstalk whereby one miRNA can inhibit another miRNA in regulating CSCs. Herein we make this short
review to summarize the current understanding of the regulatory mechanisms of miRNAs in cancer and CSCs and discuss the implications of
targeting CSCs for cancer therapeutics. J. Cell. Biochem. 115: 605–610, 2014. � 2013 Wiley Periodicals, Inc.
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Despite the continuous progress in the development of
treatment strategies, cancer still remains one of the most

lethal diseases plaguing our society today [Jemal et al., 2011]. The
5‐year survival rate was about 68% in cancer patients, underlining
that more progress is needed to understand such a disease [Baccelli
and Trumpp, 2012]. The hallmarks of cancer include unlimited
replication, insensitivity to anti‐growth signals, avoidance of
apoptosis and metastasis [Vira et al., 2012]. Of all the features,
metastasis remains as the most challenging problem of cancer
therapeutics. Recent studies have indicated that during cancer
progression, genetic and epigenetic mechanisms may lead to the
emergence of a metastatic cancer cell with stem cell properties, which
is named as cancer stem cell (CSC) or cancer‐initiating cell (CIC)
[Visvader and Lindeman, 2008; Ito et al., 2009]. These metastatic
CSCs can detach from the primary site, eventually enter the blood
and seed secondary tumors in distinct organs, and are recognized as
the main cause of death in cancer patients. Therefore, further
understanding of the regulatory mechanisms of CSCs at molecular
level is highly necessary for better cancer therapeutics.

MicroRNAs (miRNAs) are small noncoding RNAs with 21–25
nucleotides (nt) in length. They can silence their cognate target genes

by inhibiting mRNA translation or degrading the mRNAmolecules by
binding to their 30‐untranslated region [Bartel, 2004]. MiRNAs have
also been recognized as the key regulator for stemness and metastasis
of cancer cells, indicating that they may play pivotal roles in cancer
diseases [Calin et al., 2005; Ma et al., 2007]. Recently, several miRNAs
have been elucidated to regulate CSC functions and the differential
expression profiles of miRNAs from normal tissues across cancers
confirm their close relation to tumorigenesis [Lu et al., 2005]. Such
regulatory functions of miRNAs in CSCs have emerged as potential
therapeutic candidates for cancer disease by virtue of their ability to
regulate cancer progression and metastasis. Herein we review the
current understanding and recent advance of miRNAs involved in the
control of CSC functions, which will broaden our understanding of
the regulatory mechanisms of CSCs and may contribute significantly
to the cancer therapy.

CANCER STEM CELLS AND CANCER

Over the past 10 years, the concept of CSC has emerged after the
identification of CSC‐enriched populations in several distinct cancer
entities [Reya et al., 2001]. However, the existence of such cell
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populations has remained a topic of intense debate due to questions
about the robustness of CSC markers [Magee et al., 2012], till new
findings identified and tracked CSCs in mouse models of brain [Chen
et al., 2012], skin [Driessens et al., 2012], and intestinal tumors
[Schepers et al., 2012]. These findings resolved the CSC debate and
provided further supports that cancer progression is mostly driven by
CSCs. In relation to the origin of CSCs, it is believed that CSCs may
come from two different sources. One theory suggests that CSCs
originate from transformation of normal stem cells. One alternative
theory points put that CSCs were generated from normal tissue
cells which acquire stem cell‐like properties. For instance, non‐CSC
cancer cells gain CSC‐like properties through EMT process [Mani
et al., 2008]. A great number of CSCs have been isolated using cell
surface markers like CD24, CD29, CD44, CD90, CD133, aldehyde
dehydrogenase1 (ALDH1) and epithelial‐specific antigen (ESA) [Al‐
Hajj et al., 2003; Singh et al., 2003; Ginestier et al., 2007] (Table I).
And it is notable that the expression of surface markers in CSCs is
cancer type‐specific or subtype‐specific. So far, CSCs have been
identified in breast, pancreatic, prostate, colon, head and neck,
ovarian and liver cancers, melanoma and brain tumors [Leal and
Lleonart, 2012].

Classically, CSCs are defined by the following properties:
(1) high tumorigenicity, (2) the ability to differentiate into non‐
CSC daughter cells, (3) unlimited self‐renewal abilities, and (4)
remarkably resistant to conventional therapies. These findings imply
that CSCs may account for cancer formation, treatment resistance,
metastases, and cancer progression. Hence, complete cure of cancer
cannot be achieved until and unless all CSCs are totally ablated [Li
et al., 2012]. Recently, miRNAs have been reported to be frequently
deregulated in distinct cancer types. They function either as
oncogenes or as tumor suppressors and initiate tumor formation,
metastasis, epithelial–mesenchymal transition (EMT) process and the
overall “stemness” of cancer cells [Ali et al., 2012, 2013]. Therefore,
targeting these miRNAs appears to be very promising therapeutic
strategies.

MICRORNA REGULATION OF CANCER AND
CANCER STEM CELLS

Enormous evidence has proven that developmental genes in somatic
stem cells are regulated by miRNAs and vice versa. MiRNAs can

regulate mRNA at post‐translational level by binding to an 8‐base
seed sequence at the 30‐UTR of mRNAs. Thus, miRNAs are recognized
to play critical roles during development. Downregulated miRNA
expression is linked to various human diseases including cancer
[Mendell and Olson, 2012]. Several profiling studies have also
determined potential implications of high percentage miRNAs in
cancer due to their close proximity to cancer associated genomic
regions and fragile sites, chromosomal breakpoints, and dysregulated
expression levels inmanymalignancies [Garg, 2012]. Moreover, CSCs
have been proposed to be originated from normal stem cells or EMT,
and such dysregulation of CSCs by acquired epigenetic abnormalities
may include the aberrant expression of miRNAs. Here we discuss the
major findings of very recent studies highlighting the CSC‐specific
miRNAs in certain cancer types.

Over the past few years, research in the area of cancer biology has
shown that miRNAs may have both suppressive and promoting roles
in cancer progression [Hammond, 2006]. For example, studies have
shown that upregulated miR‐200c expression disrupts breast CSCs‐
mediated colony formation in vitro and inhibits tumorigenesis in
vivo. In addition, miR‐34 family members can be activated by p53
and mediate cell apoptosis and cell cycle arrest [He et al., 2007], and
let‐7 miRNAs target oncogenes like HMGA2 and RAS [Johnson
et al., 2005;Mayr et al., 2007]. BothmiRNAs are suppressed in various
tumor types and their reintroduction can reduce tumor growth.
In contrast, miR‐155 and miR‐181 family members (miR‐181a and
miR‐181b) have been evidenced as oncomiRs, which could intensely
promote the self‐renewal, colony formation of breast cancer cells and
tumor development in breast cancer [Jiang et al., 2010]. The miR‐19
was identified as the major oncogenic miRNA of the miR‐17–19
cluster [Mavrakis et al., 2010]. Moreover, some pathways controlled
by miRNAs have been shown to play critical roles in regulating CSCs.
For example, in prostate cancer cell lines, let‐7b, miR‐34a, miR‐141,
and miR‐106a were reported to be inhibited in CSCs, while miR‐452
and miR‐301 were observed to be highly expressed [Liu et al., 2012].
In breast CSCs, miRNA profiling observed that miR‐200c, miR‐203,
and miR‐375 expressions were significantly downregulated, while
the expression of miR‐125b, miR‐100, miR‐221, and miR‐222 was
notably upregulated [Wang et al., 2012]. Other miRNAs that have
been shown to be involved in various cancer types are roughly
summarized in Table II.

Recently, a very interesting research conducted by Song et al. have
observed that during the regulation of CSCs, one miRNA can function

TABLE I. CSC Markers for Different Solid Cancer Types

Cancer CSC markers

Breast ALDH1, CD24, CD44, CD90, CD133, a6‐integrin, Hedgehog‐Gli activity
Liver CD13, CD24, CD44, CD90, CD133
Lung ABCG2, ALDH1, CD90, CD117, CD133
Colon ABCB5, ALDH1, CD24, CD26, CD29, CD44, CD133, CD166, b‐catenin activity, LGR5
Glioma CD15, CD90, CD133, a6‐integrin, Nestin
Melanoma ABCB5, ALDH1, CD20, CD133, CD271
Pancreatic ABCG2, ALDH1, CD24, CD44, CD133, c‐Met, CXCR4, Nestin, Nodal‐Activin
Prostate ALDH1, CD44, CD133, CD166, a2b1‐integrin, a6‐integrin, Trop2
Ovarian CD24, CD44, CD117, CD133

Markers are not ordered according to their importance, and this is not an exhaustive list of all identified markers.
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at another miRNA. They have demonstrated that miR‐22 acts as a
crucial epigenetic modifier and promoter of EMT and breast cancer
stemness toward metastasis by silencing anti‐metastatic miR‐200
through direct targeting of the ten eleven translocation (TET) family
of methylcytosine dioxygenases [Song et al., 2013a] (Fig. 1). Almost
by the same mechanism of TET protein, Song et al. has also identified
miR‐22 as a potent proto‐oncogene in hematopoietic malignancies
[Song et al., 2013b]. These miRNAs might provide novel targets for
efficient and specific therapies for cancer and CSCs.

In short, miRNAs have been recognized as critical regulators of
cancer and CSCs. Understanding the functional role of miRNAs in a
specific type of cancer, miRNA‐based therapies can be targeted to
these CSCs in order to correct their expression levels and restoring the
tumor suppressor functions via the RNAi methods.

THERAPEUTIC IMPLICATIONS AND FUTURE
PERSPECTIVES

As discussed above, dysregulation of miRNAs has been evidenced to
be implicated in cancer progression, and miRNAs may modulate
tumor formation and metastasis by regulating CSC functions. For
example, let‐7 control cell‐cycle and differentiation of breast CSCs;
miR‐34a can restrict the migration and invasiveness of prostate CSCs
by directly targeting CD44; and miR‐200c may regulate the self‐
renewal of breast CSCs by modulating BMI1 (Fig. 1). Moreover, recent
findings also suggest that miR‐22 may exert its metastatic potential

by targeting miR‐200, thereby inhibiting demethylation of miR‐200
promoter. These new findings better our knowledge and understand-
ing of CSC function and provide novel insight into more effective
therapeutic strategies to target cancer and CSCs. Given that miRNAs
exert broad regulatory functions on cancer progression and
development, miRNA‐based therapeutics may open up new areas
in the anti‐cancer arena.

However, in spite of tremendous progress in this field, we still have
a long way to go before a fully understanding of such regulatory
mechanism is achieved. The phenotypic consequences of manipulat-
ing miRNAs in vivo are hard to predict, and most miRNAs mentioned
above were discovered and studied in C. eleganswith little knowledge
about their regulation in human development and physiology.
Hopefully, these problems mentioned above could be solved as
we get better insights into the miRNA regulation of cancer and
CSCs. Moreover, different miRNAs seem to concertedly and
distinctively modulate functional properties of CSCs, complete
eradication of CSCs may entail targeting of multiple miRNAs.
Therefore, miRNA expression profiling in CSCs or certain types of
cancer at various clinical stages might have great diagnostic and
prognostic values.

Overall, research into CSC will provide innovative approaches
to the therapeutics of cancer diseases, and miRNA‐based
therapeutic strategies hold great promise in this area. Combining
the potential of CSCs and the advantages provided by miRNAs, a
novel therapeutic approach could fill the gap in the treatment of
cancer patients.

TABLE II. CSC‐Specific miRNAs and Their Targets in Cancers

MiRNAs Cancer types Targets References

miR‐7 Breast KLF4 Okuda et al. [2013]
miR‐17–92 Leukemia p21 Wong et al. [2010]
miR‐145 Liver, brain OCT4, SOX2 Jia et al. [2012], Yang et al. [2012]
miR‐93 Colon HDAC8, TLE4 Yu et al. [2011]
miR‐21 Colon, ovarian T GFbR2 Chung et al. [2013], Yu et al. [2012]
miR‐22 Breast miR‐200, TET Song et al. [2013a]
miR‐30 Breast UBC9, ITGB3 Yu et al. [2010]
miR‐150 Liver c‐MYB Zhang et al. [2012]
miR‐128 Glioma, breast BMI1, ABCC5 Godlewski et al. [2008], Zhu et al. [2011]
miR‐143 Prostate FNDC3B Fan et al., 2013
miR‐451 Colon, brain COX‐2, ABCB1, MYC Bitarte et al. [2011], Gal et al. [2008]
miR‐125 Brain CDK6, CDC25A Shi et al. [2010], Shi et al. [2012]
miR‐126 Gastric SOX2, PLAC1 Otsubo et al. [2011]
miR‐128 Brain PRC, BMI1 Nanta et al. [2013], Peruzzi et al. [2013]
miR‐200 family Breast, ovary, lung,

nasopharyngeal carcinoma,
pancreatic, colorectal

ZEB2, CTNNB1, BMI1, SUZ12 Iliopoulos et al. [2010], Lo et al. [2011],
Shimono et al. [2009], Tellez et al. [2011],
Wellner et al. [2009], Xia et al. [2010]

miR‐181 Liver, breast RASSF1A, CTNNB1, ATM Ji et al. [2009], Meng et al. [2012], Wang et al. [2011]
let‐7 Breast, liver SOCS‐1 Yang et al. [2010], Yu et al. [2007]
miR‐495 Breast CDH1, REDD1 Hwang‐Verslues et al. [2011]
miR‐130b Liver TP53INP1 Ma et al. [2010]
miR‐326 Leukemia Hedgehog Babashah et al. [2013]
miR‐328 Brain ABCG2 Li et al. [2010]
miR‐124, miR‐137 Brain CDK6, SLUG Silber et al. [2008], Xia et al. [2012]

BMI1, B lymphoma Mo‐MLV insertion region 1 homolog; FNDC3B, fibronectin type III domain containing 3B; HDAC8, histone deacetylase 8; KLF4, Krüppel‐like factor 4;
NPC, nasopharyngeal carcinoma; PRC, polycomb repressor complex; Sox2, SRY (sex determining region Y)‐box 2; TET, ten eleven translocation; TLE4, transducin‐like
enhancer protein 4.
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